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Continuity Equation I

∂ρ
∂t +∇ · (ρv) = 0

V

4 in mass = flux in/out of volume:

dMV

dt
=

∫
∂ρ
∂t

dt = −
∫

V
∇ · (ρv) dx = −

∫
∂V
ρ v · n̂ dS

ρ = (probability) density

v = velocity field



Continuity Equation II

l

For measures:

∂tµt +∇ · (µtvt) = 0

in the weak sense:

∫ T

0

∫
∂tϕ + 〈vt ,∇ϕ〉 dµt dt = 0 ∀ϕ ∈ C∞c (Rd × (0,T ))

supp(ρ)

V

dMV

dt
= 0 if the supp(ρ) ≺ V



Lagrangian Description I

vt

µ0
µ1

Xt

Given vt , have flow equation:Ẋt = vt(Xt)

X0 = id

Eulerian:



Lagrangian Description II

Define

µt = Xt#µ0

(Here T#µ = ν if for

any measurable A

ν(A) = µ(T−1(A))

or for any test function ϕ ∈ L1(dν)R
ϕ(y) dν(y) =

R
ϕ(T (x)) dµ(x) )

Then (formally), {µt}t∈[0,T ] satisfy the continuity equation:

ϕ ∈ C∞c (Rd × (0,T )); Ψ(x , t) = ϕ(Xt(x), t)Z T

0

Z
Rd

∂tϕ(x) + 〈vt(x), ϕ(x)〉 dµt(x) dt

=

Z T

0

Z
Rd

∂tϕ(Xt(x), t) + 〈vt(Xt(x),∇ϕ(Xt(x))〉 dµ0(x) dt

=

Z T

0

Z
Rd

dΨ

dt
(x , t) dµ0(x) dt

=

Z
Rd

ϕ(XT (x),T )− ϕ(x , 0) dµ0(x)

= 0



Wasserstein Distance

Φ#ρ0 = ρ← Φ : Π
ρ0

ρ

Φ

M
(density)

M∗
(flow map)

s = −∇ · (ρ∇p); gρ(s1, s2) =
R
ρ∇ρ1 · ρ2

(non-flat)

g∗Φ(v1, v2) =
R

(v1 · v2)ρ0

(flat)

(Induced distance:

d(x0, x1)2 = inf{
R 1

0 gx(t)( dx
dt
, dx

dt
) dt : t 7→ x(t) ∈ M′, x(0) = x0, x(1) = x1} )

x0 x1

Upshot:

d(ρ0, ρ)2 = infΦ:ρ=Φ#ρ0

∫
ρ0|id− Φ|2

F. Otto.
The geometry of dissipative evolution eqns:
the porous medium equation.
Comm. PDE, 26 (2001), 101-174.



A.C. Curves and the Continuity Equation

Definition. Let

P2(Rd ,W2)

denote the space of probability measures with bounded second moment equipped with the Wasserstein distance

W 2
2 (µ, ν) = min

(Z
Rd×Rd

|x − y|2 dγ(x, y) : γ ∈ Γ(µ, ν)

)
and

Γ(µ, ν) = {γ : γ(A× Rd ) = µ(A) and γ(Rd × B) = ν(B), for all measurable A and B}

Theorem. There is a correspondence:

{A.C. curves in P2(Rd ,W2)} ⇐⇒ {velocity fields vt ∈ L2(dµt)}

via

∂tµt +∇ · (vtµt) = 0 and lim
h→0

1

|h|
W2(µt+h, µt)(≤) = ‖vt‖L2(µt )

Thus

W 2
2 (µ0, µ1) = min

Z 1

0
‖vt‖2

L2(dµt )
: ∂tµt +∇ · (vtµt) = 0

ff
and

TµP2(Rd ,W2) = {∇ϕ : ϕ ∈ C∞c (Rd )}
L2(dµ)



Hamiltonian ODE I

Hamiltonian Dynamics. R2d 3 x = (p, q) = (momentum, position)

E.g., H(p, q) =
1

2
|p|2 + Φ(q)

ẋ =

 
ṗ

q̇

!
=

 
0 −Id

Id 0

! 
Hp

Hq

!
= J∇H

Start with measure, infinite dimensional Hamiltonian system?

Definition (Hamiltonian ODE). H : P2(R2d )→ (−∞,∞] (proper, lowersemicontinuous).

L. Ambrosio and W. Gangbo. Hamiltonian
ODE’s in the Wasserstein Space of Probability
Measures. Comm. in Pure and Applied Math.,
61, 18–53 (2007).

W. Gangbo, H. K. Kim, and T. Pacini. Differ-
ential forms on Wasserstein space and infinite
dimensional Hamiltonian systems. To appear
in Memoirs of AMS.

1

A.C. curve {µt}[0,T ] is Hamiltonian ODE w.r.t. H if

∃vt ∈ L2(dµt), ‖vt‖L2(dµt ) ∈ L1(0,T )
L. Ambrosio and W. Gangbo. Hamiltonian
ODE’s in the Wasserstein Space of Probability
Measures. Comm. in Pure and Applied Math.,
61, 18–53 (2007).

W. Gangbo, H. K. Kim, and T. Pacini. Differ-
ential forms on Wasserstein space and infinite
dimensional Hamiltonian systems. To appear
in Memoirs of AMS.

1

such that8<:∂tµt +∇ · (Jvtµt) = 0, µ0 = µ, t ∈ (0,T )

vt ∈ Tµt P2(R2d ) ∩ ∂H (µt) for a.e., t



Hamiltonian ODE II

Example.

H (µ) =
1

2

∫
|p|2 dµ+

∫
Φ(q) dµ+

1

2

∫
(W ∗ µ)(q) dµ

∇H (µ) = (p,−(∇W ∗ µ+ Φ)(q))

Theorem. (Ambrosio, Gangbo) Suppose H : P2(R2d)→ R satisfies

♣|∇H (x)| ≤ C (1 + |x |)
◦ If µn = ρnL 2d , µ = ρL 2d and µn ⇀ µ then ∇H (µnk )µnk ⇀ ∇H (µ)µ

Then given µ = ρL 2d :

◦The Hamiltonian ODE admits a solution for t ∈ [0,T ]

◦ t 7→ µt is L–Lipschitz

◦ If H is λ–convex, then H (µt) = H (µ).



Mass Reaching Infinity in Finite Time

Condition (♣).

We are solving

∂tµt +∇ · (J∇H µt) = 0; vt := J∇H (µt)

Recall characteristics

Ẋt = vt(Xt); X0 = id

|vt(x)| ≤ C(1 + |x |) =⇒ |Xt | . eCt(1 + |X0|):

preserves compact support, second moment...

What about other

Hamiltonians? E.g.,

q

Φ(q)

Explicit Computation. |vt(Xt)| = C(1 + |Xt |)R ,R > 1

 
|Xt |
|X0|

!R−1

=
1

1− t(R − 1)|X0|R−1

x  ∞ at time τ(x) =
1

(R − 1)|x |R−1
<∞



Regularization: Fade With Arc Length

Ẋt = vt(Xt) Mt = M0e
−
R t

0 Cs(Xs)|vs(Xs)| ds

For simplicity, Cs := ε



Inhomogeneous Continuity Equation

(♠)
∂µt

∂t
+∇ · (vtµt) = −ε|vt |µt

Given µ0, vt , define

µ∗t = Xt#µ0

Rt(Xt) = exp(−ε
∫ t

0

|vt(Xs) ds)

then

µt = Rtµ
∗
t

satisfies (♠).

µ0

µ∗t

µt

Proposition. (♠) preserves α–exponential moments for α ≤ ε, since

distance tranveled ≤ arclength



A Distance for Measures I

Observation. If D1 and D2 are distances, then so is D ′ =
√

D2
1 + D2

2 .

Fix ε > 0 and consider

M∞,ε(R2d ,B2):

{(positive) Borel measures

with ε–exponential moment}

with distance

B2
2 (µ, ν) = W 2

2 (µ, ν) + (Mµ −Mν)2

µ0

µ∗t

µt

µt



A Distance for Measures II

Geodesics of B2. Geodesic in (P2,W2) + linear decay of mass

µ0

µt

|µ′|(t) = W2(µ0, µ1)

µt

Ṁt = |M1 −M0|

|µ′|(t) =
√
|µ′|(t))2 + (Ṁt)2

µ0

µ∗t

µt



Continuity Of Dynamics I

Example. Hölder–1/2 Continuity; moment assumption needed.

µh

D

1/2− κh

1/2

µ0

D

1/2

1/2

µh

D

1/2(1− κh)

1/2(1 + κh)

W2 = D
√
κh



Continuity of Dynamics II

Lemma. Let µ0 ∈M∞,ε. Let us assume that we have

(time–dependent) velocity fields vt satisfying

|vt(x)| ≤ C (1 + |x |)R

for some constants C ,R > 0. Then if (µεt )t∈[0,T ] is a solution to

∂µεt
∂t

+∇ · (vtµ
ε
t ) = −ε|vt |µεt ,

∃(C ,R, ε)–dependent constant G <∞ such that ∀t, t + h ∈ [0,T ]

with h < h0 for some h0 > 0 sufficiently small

B2(µεt , µ
ε
t+h) ≤ GM∞,ε(µ0)

√
h



Application to Hamiltonian ODE I

Theorem. (Chayes, Gangbo, L.) Fix ε > 0 and T > 0.

Suppose H : M∞,ε → R and vµ := J∇H (µ) satisfies

◦ vµ(x) ≤ C (1 + |x |)R

◦ If µn ⇀ µ narrowly, then µnvµn → µvµ

Then given µ0 ∈M∞,ε, there exists a solution to

∂µεt
∂t

+∇ · (vtµ
ε
t ) = −ε|vt |µεt , t ∈ [0,T ]

with

v εt = J∇H (µεt ).

Furthermore, there exists ε→ 0 limiting measures {µt}t∈[0,T ].



Application to Hamiltonian ODE II

Current Work.

◦ Appropriate limiting measures satisfy the continuity equation.

◦ Dependence on limiting procedure.

◦ Appropriate conservation laws (mass, energy, etc.).

Questions.

◦ Different inhomogeneous equation?

◦ Different distance?

◦ Relation between the two?

◦ Physical systems of relevance?



Thank you


